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Selection effects

! Contrast

– exploratory analysis, where we study data with no strong prior hypotheses, aiming to find
something ‘interesting’ for future study, and

– confirmatory analysis, where we specify an analysis protocol (hypotheses/tests/. . . ) in
advance and stick to it.

! Most statistical procedures assume we are doing the second, but there can be a strong temptation
to cheat and treat an exploratory analysis as confirmatory.

! In ‘the garden of forking paths’ we make a series of choices (which response? transformation?
which explanatory variables? . . . ) but do not then allow for them.

! This leads to non-reproducible results, ‘false discoveries’, bad science . . .

! If we compute a confidence interval I for θ following a sequence of choices summarised in a
selection event S that is based on the same data, and compute

P(θ ∈ I) when we should compute P(θ ∈ I | S),

we are effectively pretending that S did not exist.
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Simple example

Example 68 Suppose T ∼ N (θ, 1) and we perform a two-sided test of H0 : θ = 0 at level α = 5%
and then construct a 95% confidence interval I95 around the observed tobs if we reject H0. Compare
the resulting confidence intervals when we do and do not allow for selection. What is the coverage of
I95 conditional on S?
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Simple example II
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Conditional coverage P(θ ∈ I95 | S) of I95 as a function of θ.
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Note to Example 68

! Recall the basis of confidence intervals for θ based on an estimator T satisfying T ∼ N (θ, 1). We
use the fact that T − θ ∼ N (0, 1) to argue that

P(T ≤ tobs) = P(T − θ ≤ tobs − θ) = Φ(tobs − θ)

and then set this equal to α, 1− α to obtain the (1− 2α) confidence interval
(tobs − z1−α, tobs − zα), which reduces to the 95% confidence interval I95 with limits tobs ± 1.96
when α = 0.025.

! If we condition on the selection event SR = {T > z1−β} and, compute the 95% confidence
interval for θ if this event occurs, we are effectively using the conditional distribution

P(T ≤ tobs | T > z1−β) = P(T − θ ≤ tobs − θ | T − θ > z1−β − θ)

=
Φ(tobs − θ)−Φ(z1−β − θ)

1− Φ(z1−β − θ)

and the (1− 2α) interval for θ has as endpoints the solutions to

Φ(tobs − θ)− Φ(z1−β − θ)

1− Φ(z1−β − θ)
= α, 1 − α.

! If we set β = α = 0.025, then we get the limits shown in the graph, which shows that even having
tobs = 3 still leads to a 95% CI that contains 0 when we allow for selection. Hence making
allowance for selection can radically change inferences, especially when H0 is only just rejected.

! The second graph shows that if we ignore the selection and just use the interval I95 after
observing the event S = {|T | > z0.975}, then the true coverage varies from 0 when θ = 0 to 0.95
when θ → ∞, but does not pass its nominal value until θ > 2.
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Allowing for selection

! Lots of work in last decade, in two main categories:

! methods for specific algorithms (e.g., the lasso) with a selection event S of a specified form and
for which f(Y | S) is tractable;

! more general approaches, including

– methods that allow for all possible selection procedures, and hence are hyper-conservative (e.g.,
so-called universal inference, e-values, . . . );

– splitting the data into two or more groups (below);

– adding noise (less general, since strictly applicable only to certain setttings).

! Garcia Rasines and Young (2023, Biometrika) have a good discussion and more references.
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Sample splitting

! Sample splitting is a standard approach to dealing with selection.

! Partition (independent) original data Y = {Y1, . . . , Yn} at random into subsets Y0 and Y1, of
respective sizes n0 = pn and n1 = (1− p)n, use Y0 for selection, and then perform inferences
using Y1.

! As Y1 ⊥⊥ Y0 and S depends only on Y0, we have

f(Y) = f(Y | S)f(S) = f(Y0,Y1 | S)f(S) = f(Y1)f(Y0 | S)f(S),

so any inference based on Y1 is unaffected by the selection.

! This approach is simple and widely applicable (at least for random samples), but

– if the split is random, selections and inferences may be different for different splits;

– there is a loss of power, both for finding any effects (using Y0) and for inference for them
(using Y1);

– if the data are not a random sample (e.g., in a regression setup, (y, x), with x treated as
constant), then we should aim for similar information contents in Y0 and Y1 (more formally,
ancillary statistics should be similar for both parts), and it may be hard to achieve this,
particularly in high dimensions.
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Randomisation

! Data (Y,X), with X (if present) treated as constant

! Have random variable W , maybe dependent on X, and base selection on U = u(Y,W ), e.g.,
setting selection variable S = s(U) equal to s.

! Then base inference on Y | U , which is conditionally independent of S.

! If Y (→ (U, V ) = (u(Y,W ), v(Y,W )), where (U, V ) are jointly sufficient for model and U ⊥⊥ V ,
then inference from Y | U is equivalent to inference from V .

! Simple example: Y ∼ Nn(µ,σ2In) with σ2 known, U = Y + σpW and V = Y − σp−1W , where
W ∼ Nn(0, In) for some p ∈ (0, 1):

– if p ≈ 0, then U ≈ Y and the selection will be nearly the same as with the original data, but
the inference will be poor because V ̸≈ Y ;

– if p ≈ 1, then V ≈ Y and the inference will be good but U ̸≈ Y so the selection may be very
different from that based on Y .

– Implies context-based trade-off between selection and inference.

! It can be shown that this beats sample splitting, at least in some special cases.

Example 69 Discuss randomisation in Example 68.
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Note to Example 69

! Here T ∼ N (θ, 1), so we would take U = T + pW , where W ∼ N (0, 1) independent of T . Note
that if we set V = T −W/p, then

U ∼ N (θ, 1 + p2), V ∼ N (θ, 1 + 1/p2), cov(U, V ) = 0,

so U ⊥⊥ V , and we can write

T =
U + p2V

1 + p2
.

Hence

T | U = u
D
=

u+ p2V

1 + p2
,

which is equivalent to using the normal distribution of V for inference, as p and u are known.
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Implications

! Need to be aware of possibility of selection effects and to read the literature critically.

! Must be clear if a study is exploratory or confirmatory:

– if confirmatory, need to clarify protocol for inference beforehand;

– if exploratory, need to avoid (any?) conclusions that might be due to ‘forking paths’.

! Very active area of research, likely to keep on changing in next few years.

! At present it looks like randomisation is a good approach in cases with simple sufficient statistics
. . . and asymptotically when σ2 can be estimated reasonably well.
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5 Bootstrap Inference slide 166

5.1 Basic Notions slide 167

Parameters and functionals

! Parametric models are determined by a finite vector θ ∈ Θ. Does this generalise?

! If Y ∼ G, then we can define a parameter in terms of a statistical functional, e.g.,

µ = t1(G) =

∫
y dG(y), σ2 = t2(G) =

∫
y2 dG(y)−

{∫
y dG(y)

}2

.

! Below we always assume that such functionals are well-defined.

! We apply the ‘plug-in principle’ and replace G by an estimator Ĝ, giving

µ̂ = t1(Ĝ) =

∫
y dĜ(y), σ̂2 = t2(Ĝ) =

∫
y2 dĜ(y)−

{∫
y dĜ(y)

}2

.

! With a parametric model we can write G ≡ Gθ and Ĝ ≡ Gθ̂, but a general estimator of G based

on Y1, . . . , Yn
iid∼ G is the empirical distribution function (EDF)

Ĝ(y) =
1

n

n∑

j=1

H(y − Yj), H(x) =

{
0, x < 0,

1, x ≥ 0,

where H(·) is the Heaviside function.
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Algorithmic approach

Example 70 Give general definitions of the median and the parameter obtained from a maximum
likelihood fit of a density f(y; θ). What are the corresponding estimators (a) under a fitted exponential
model, and (b) a nonparametric model?

! This approach is essentially algorithmic: t(·) is an algorithm that

– when applied to the distribution G gives the parameter t(G);

– when applied to an estimator Ĝ based on data Y1, . . . , Yn gives the estimator t(Ĝ).

! The algorithm t(·) can be (almost) arbitrarily complex.

! This point of view suggests a sampling approach to frequentist inference:

– if we knew G, we could assess the properties of t(Ĝ) by generating many samples
Ĝ ≡ {Y1, . . . , Yn} from G and looking at the corresponding values of t(Ĝ);

– since G is unknown, we replace it by Ĝ, generate samples Ĝ∗ ≡ {Y ∗
1 , . . . , Y

∗
n } from Ĝ, and use

the corresponding values of t(Ĝ∗) to estimate the distribution of t(Ĝ).

! The samples Ĝ∗ ≡ {Y ∗
1 , . . . , Y

∗
n } are known as bootstrap samples, and the overall procedure is

known as a bootstrap, one of many possible resampling procedures.
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Note to Example 70

! The usual definition of the p quantile is

t1(G) = inf{x : G(x) ≥ p},

for p ∈ (0, 1). For the median we set p = 1/2.

! The maximum likelihood estimator is defined as

t2(G) = argmaxθEG{log f(Y ; θ)} = argmaxθ

∫
log f(y; θ) dĜ(y),

which we earlier called θg.

! Under an exponential model

t1(G) = inf{x : 1− exp(−λx) ≥ p} = −λ1 log(1− p) = λ−1 log 2,

so if the fitted model has parameter λ̂, then t1(Ĝ) = λ̂−1 log 2.
Likewise θg is estimated by

argmaxθ

∫
log f(y; θ) λ̂e−λ̂y dy;

note that f is not necessarily exponential.

! Under the general model and with order statistics Y(1) ≤ Y(2) ≤ · · · ≤ Y(n),

t1(Ĝ) = inf{x : Ĝ(x) ≥ p} = Y(m),

where m = ⌊(n+ 1)/2⌋, and as dH(u) puts a unit mass at u = 0,

t2(Ĝ) = argmaxθ

∫
log f(y; θ) dĜ(y)

= argmaxθ

∫
log f(y; θ) d

⎧
⎨

⎩n−1
n∑

j=1

H(y − Yj)

⎫
⎬

⎭

= argmaxθn
−1

n∑

j=1

∫
log f(y; θ) dH(y − Yj)

= argmaxθn
−1

n∑

j=1

log f(Yj; θ),

i.e., the maximum likelihood estimator of θ based on the sample.
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Example: Handedness data

Table 1: Data from a study of handedness; hand is an integer measure of handedness, and dnan a
genetic measure. Data due to Dr Gordon Claridge, University of Oxford.

dnan hand dnan hand dnan hand dnan hand

1 13 1 11 28 1 21 29 2 31 31 1
2 18 1 12 28 2 22 29 1 32 31 2
3 20 3 13 28 1 23 29 1 33 33 6
4 21 1 14 28 4 24 30 1 34 33 1
5 21 1 15 28 1 25 30 1 35 34 1
6 24 1 16 28 1 26 30 2 36 41 4
7 24 1 17 29 1 27 30 1 37 44 8
8 27 1 18 29 1 28 31 1
9 28 1 19 29 1 29 31 1
10 28 2 20 29 2 30 31 1
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Example: Handedness data

Scatter plot of handedness data. The numbers show the multiplicities of the observations.
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Example: Handedness data

! How do we quantify dependence between dnan and hand for these n = 37 individuals?

! A standard measure is the product-moment (Pearson) correlation for G(u, v), i.e.,

θ = t(G) =

∫ {
u−

∫
udG(u, v)

}{
v −

∫
v dG(u, v)

}
dG(u, v)

[∫ {
u−

∫
udG(u, v)

}2
dG(u, v)

∫ {
v −

∫
v dG(u, v)

}2
dG(u, v)

]1/2 .

! With (u, v) = (dnan, hand), the sample version is

θ̂ = t(Ĝ) =

∑n
j=1(dnanj − dnan)(handj − hand)

{∑n
j=1(dnanj − dnan)2

∑n
j=1(handj − hand)2

}1/2

= 0.509.

! Standard (bivariate normal) 95% confidence interval is (0.221, 0.715), but this is obviously
inappropriate (the data look highly non-normal).

! Try simulation approach . . .
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Bootstrap simulation

! Whether Ĝ is parametric or non-parametric, we simulate as follows:

– For r = 1, . . . , R:

◃ generate a bootstrap sample y∗1, . . . , y
∗
n

iid∼ Ĝ,

◃ compute θ̂∗r using y∗1, . . . , y
∗
n,

so the output is a set of bootstrap replicates,

θ̂∗1, . . . , θ̂
∗
R.

! We then use θ̂∗1, . . . , θ̂
∗
R to estimate properties of θ̂ (histogram, . . .).

! If R → ∞, then get perfect match to theoretical calculation based on Ĝ (if this is available):
Monte Carlo error disappears completely.

! In practice R is finite, so some Monte Carlo error remains.

! If Ĝ is the EDF, then y∗1, . . . , y
∗
n

iid∼ Ĝ are sampled with replacement and equal probabilities from
y1, . . . , yn, so if f∗

i = #{y∗j = yi}, then (f∗
1 , . . . , f

∗
n) has the multinomial distribution with

denominator n and probability vector (n−1, . . . , n−1).

! Although E∗(f∗
j ) = 1, yj can appear 0, 1, . . . , n times in the bootstrap sample.
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Handedness data: Fitted bivariate normal model

Contours of bivariate normal distribution fitted to handedness data; parameter estimates are
µ̂1 = 28.5, µ̂2 = 1.7, σ̂1 = 5.4, σ̂2 = 1.5, ρ̂ = 0.509. The data are also shown.
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Handedness data: Parametric bootstrap samples

Left: original data, with jittered vertical values. Centre and right: two samples generated from the
fitted bivariate normal distribution.
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Handedness data: Correlation coefficient

Bootstrap distributions with R = 10000. Left: simulation from fitted bivariate normal distribution.
Right: nonparametric sampling from the EDF. The lines show the theoretical probability density
function of the correlation coefficient under sampling from a fitted bivariate normal distribution.
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Handedness data: Bootstrap samples

Left: original data, with jittered vertical values. Centre and right: two bootstrap samples, with jittered
vertical values.
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Using the θ̂∗

! The bias and variance of θ̂ as an estimator of θ = t(G),

β(G) = E(θ̂ | y1, . . . , yn
iid∼ G)− t(G), ν(G) = var(θ̂ | G),

are estimated by replacing the unknown G by its known estimate Ĝ:

β(Ĝ) = E(θ̂ | y1, . . . , yn
iid∼ Ĝ)− t(Ĝ), ν(Ĝ) = var(θ̂ | y1, . . . , yn

iid∼ Ĝ).

! The Monte Carlo approximations to β(Ĝ) and ν(Ĝ) are

b = θ̂∗ − θ̂ = R−1
R∑

r=1

θ̂∗r − θ̂, v =
1

R− 1

R∑

r=1

(
θ̂∗r − θ̂∗

)2
.

For the handedness data, R = 104 and b = −0.046, v = 0.043 = 0.2052.

! We estimate the p quantile of θ̂ using the p quantile of θ̂∗1, . . . , θ̂
∗
R, i.e., θ̂∗((R+1)p).
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Handedness data

Summaries of the θ̂∗. Left: histogram, with vertical line showing θ̂. Right: normal Q–Q plot of θ̂∗.
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Common questions

! How big should n be? — depends on the context

! What if the sample is unrepresentative? — this is always a potential problem in statistics, not
specific to resampling methods.

! How big should R be? — at least 1000 for most purposes

! Why take resamples of size n?

– We usually want to mimic the sampling properties of samples like the original one, so take
resamples of size n,

– but sometimes we take resamples of size m ≪ n in order to achieve validity of the
bootstrap—e.g., for extreme quantiles.

! Why resample from the EDF?

– The EDF is the nonparametric MLE of G, so is a natural choice, but

– sometimes (e.g., testing) we resample from a constrained version of Ĝ,

– sometimes it may be useful to smooth Ĝ;

– sometimes it may be useful to simulate from (several) parametric fits.
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How big should n be?

! For the average θ̂ = y, the number of distinct samples is

mn =

(
2n− 1

n

)
,

the most probable of which has probability pn = n!/nn.
For n > 12, we have mn > 106 and pn < 6× 10−5.

! Bootstrapping of smooth statistics like the average will often work OK provided n > 20.

! For the median of a sample of size n = 2m+ 1, the possible distinct values of θ̂∗ are
y(1) < · · · < y(n), and

P∗(θ̂∗ > y(l)) =
m∑

r=0

(
n

r

)(
l

n

)r (
1− l

n

)n−r

,

so exact calculations of the variance etc. are possible.

! However the median is very vulnerable to bad sample values, so for the median (and other
‘non-smooth’ statistics) much larger n is needed for reliable inference.
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How many bootstraps?

! Must estimate moments and quantiles of θ̂ and derived quantities. Often feasible to take
R ≫ 1000

! Need R ≥ 200 to estimate bias, variance, etc.

! Need R ≫ 100, preferably R ≥ 2500 to estimate quantiles needed for 95% confidence intervals
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Resamples of size n?

! Exponential sample of size n = 1000

! Distribution of nmin(Y1, . . . , Yn) is exp(1)

! Resampling distribution mmin(Y ∗
1 , . . . , Y

∗
m) using resamples of size m = 1000, 100, 50

! To avoid discreteness must choose m ≪ n, but how?
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Variants of Ĝ?

! Can be useful to simulate from a smoothed EDF, given by

Y ∗ = yj∗ + hε∗, ε∗ ∼ N (0, 1) ⊥⊥ j∗ ∼ U{1, . . . , n},

equivalent to simulating from a kernel density estimate. Below, with h = 0.1 (red) and h = 0.5
(blue).

! Since var∗(Y ∗) = σ̂2 + h2, may prefer a shrunk smoothed estimate, given by

Y ∗ = y +
(yj∗ − y) + hε∗

(1 + h2/σ̂2)1/2
.
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When does the bootstrap work?

! ‘Work’ might mean the bootstrap gives

– reliable answers when used in practice, or

– mathematically correct answers under ‘suitable’ regularity conditions.

! For the second of these, suppose we seek to estimate properties of a standardized quantity
Q = q(Y1, . . . , Yn;G), maybe Q = n1/2(Y − θ). Let n → ∞ to get limiting results for the
distribution function

HG,n(q) = PG {Q(Y1, . . . , Yn;G) ≤ q} ,

where subscript G indicates that Y1, . . . , Yn is a random sample from G.

! Bootstrap estimate of this is

HĜ,n(q) = PĜ

{
Q(Y ∗

1 , . . . , Y
∗
n ; Ĝ) ≤ q

}

where Q(Y ∗
1 , . . . , Y

∗
n ; Ĝ) = n1/2(Y

∗ − y).

! We need conditions under which HĜ,n
D−→ HG,n as n → ∞.

stat.epfl.ch Autumn 2024 – slide 185

119



Regularity conditions

! The true distribution G is surrounded by a neighbourhood N in a suitable space of distributions,
and as n → ∞, Ĝ eventually falls into N with probability one. Also:

1. for any F ∈ N , HF,n converges weakly to a limit HF,∞;

2. this convergence must be uniform on N ; and

3. the function mapping F to HF,∞ must be continuous.

! Weak convergence of HF,n to HF,∞ means that for all integrable b(·),
∫

b(u) dHF,n(u) →
∫

b(u) dHF,∞(u), n → ∞.

! Under these conditions the bootstrap is consistent: for any q and ε > 0,

P{|HĜ,n(q)−HG,∞(q)| > ε} → 0, n → ∞.

! The first condition ensures that there is a limit for HG,n to converge to.

! As n increases, Ĝ changes, so the second and third conditions are needed to ensure that HĜ,n

approaches HG,∞ along every possible sequence of Ĝs.

! If any one of these conditions fails, the bootstrap can fail. For the minimum (for example) the
convergence is not uniform on suitable neighbourhoods of G.
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Summary

! Estimator is algorithm:

– applied to original data y1, . . . , yn gives original θ̂;

– applied to simulated data y∗1, . . . , y
∗
n gives θ̂∗;

– θ̂ can be of (almost) any complexity; but

– for more sophisticated ideas to work, θ̂ must often be smooth function of data.

! Sample is used to estimate G:

– Ĝ ≈ G — heroic assumption

! Simulation replaces theoretical calculation:

– removes need for mathematical skill;

– does not remove need for thought; and in particular,

– check code very carefully — garbage in, garbage out!

! Two sources of error:

– statistical (Ĝ ̸= G) — reduce by thought; and

– simulation (R ̸= ∞) — reduce by taking R large (enough).
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5.2 Confidence Intervals slide 188

Bootstrap confidence Intervals: Desiderata

! A (1− α) upper confidence limit for a scalar parameter θ based on data Y is a random variable
θα = θα(Y ) for which

P (θ ≤ θα) = α, 0 < α < 1, θ ∈ Θ. (7)

! We may seek invariance to monotone transformations ψ = ψ(θ), that is

P {ψ(θ) ≤ ψα} = α, 0 < α < 1, θ ∈ Θ.

! In practice exact intervals are rarely available, and we seek intervals such that (7) is satisfied as
closely as possible. If Y ≡ Y1, . . . , Yn, then we typically have

P (θ ≤ θα) = α+O(n−1/2), 0 < α < 1, θ ∈ Θ,

and the corresponding two-sided interval satisfies

P (θα < θ ≤ θ1−α) = (1− 2α) +O(n−1), 0 < α < 1/2, θ ∈ Θ.
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Normal confidence intervals

! If θ̂
·∼ N (θ+ β, ν) with known bias β = β(G) and variance ν = ν(G), then a (1− 2α) confidence

interval is based on the equation

P

(

zα <
θ̂ − θ − β

ν1/2
≤ z1−α

)

= 1− 2α,

and has limits θ̂ − β ± zαν1/2, where Φ(zα) = α.

! We replace β, ν by the bootstrap estimates

β(G)
.
= β(Ĝ)

.
= b = θ̂∗ − θ̂,

ν(G)
.
= ν(Ĝ)

.
= v = (R − 1)−1

∑

r

(θ̂∗r − θ̂∗)2,

to get the (1− 2α) interval with limits θ̂ − b± zαv1/2.

! For the handedness data we have R = 10, 000, b = −0.046, v = 0.2052, α = 0.025, zα = −1.96,
so 95% CI is (0.147, 0.963)

! We can use the θ̂∗1, . . . , θ̂
∗
R to check the quality of the normal approximation, and perhaps to

suggest transformations.
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Handedness data

Summaries of the θ̂∗. Left: histogram, with vertical line showing θ̂. Right: normal Q–Q plot of θ̂∗.

Histogram of t

t*

D
en

si
ty

−0.5 0.0 0.5 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

−4 −2 0 2 4

−
0

.5
0

.0
0

.5

Quantiles of Standard Normal

t*
stat.epfl.ch Autumn 2024 – slide 191

Handedness data: Transformed scale?

Plots for ψ̂∗ = 1
2 log{(1 + θ̂∗)/(1 − θ̂∗)}:

Transformed correlation coefficient
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Normal confidence intervals

! Correlation coefficient: try Fisher’s z transformation:

ψ̂∗ = ψ(θ̂∗) = 1
2 log{(1 + θ̂∗)/(1 − θ̂∗)}

with bias and variance estimates

bψ = R−1
R∑

r=1

ψ̂∗
r − ψ̂, vψ =

1

R− 1

R∑

r=1

(
ψ̂∗
r − ψ̂∗

)2
,

! Then the (1− 2α) confidence interval for θ is

ψ−1
{
ψ̂ − bψ − z1−αv

1/2
ψ

}
, ψ−1

{
ψ̂ − bψ − zαv

1/2
ψ

}

! For handedness data, get (0.074, 0.804) . . . but how do we choose a transformation in general?
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Pivots

! Assume properties of θ̂∗1, . . . , θ̂
∗
R mimic effect of sampling from original model (plug-in principle)

— false in general, but more nearly true for pivots.

! Pivot is combination of data and parameter whose distribution is independent of underlying
model, such as t statistic

Z =
Y − µ

(S2/n)1/2
∼ tn−1,

when Y1, . . . , Yn
iid∼ N (µ,σ2).

! Exact pivot generally unavailable in nonparametric case, but if we can estimate the variance of θ̂∗

using V , we use

Z =
θ̂ − θ

V 1/2

! If the quantiles zα of Z known, then

P (zα ≤ Z ≤ z1−α) = P

(

zα ≤ θ̂ − θ

V 1/2
≤ z1−α

)

= 1− 2α

(zα no longer denotes a normal quantile!) gives (1− 2α) CI (θ̂ − V 1/2z1−α, θ̂ − V 1/2zα)
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Studentized statistic

! Bootstrap sample gives (θ̂∗, V ∗) and hence

Z∗ =
θ̂∗ − θ̂

V ∗1/2
.

! We bootstrap to get R copies of (θ̂, V ), i.e.,

(θ̂∗1, V
∗
1 ), (θ̂∗2, V

∗
2 ), . . . , (θ̂∗R, V

∗
R),

and the corresponding

z∗1 =
θ̂∗1 − θ̂

V ∗1/2
1

, z∗2 =
θ̂∗2 − θ̂

V ∗1/2
2

, . . . , z∗R =
θ̂∗R − θ̂

V ∗1/2
R

,

then order these to estimate quantiles of Z, with zp estimated by z∗(p(R+1)).

! Get (1− 2α) Studentized bootstrap confidence interval

θ̂ − V 1/2z∗((1−α)(R+1)) , θ̂ − V 1/2z∗(α(R+1)).

! This is not invariant to transformation and needs an estimated variance V ∗
r for each θ̂∗r .
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Why Studentize?

! If we Studentize, then Z
D−→ N(0, 1) as n → ∞, and we can use Edgeworth series to write

PG(Z ≤ z) = Φ(z) + n−1/2a(z)φ(z) +O(n−1),

where a(·) is an even quadratic polynomial.

! For example, if we use θ̂ = Y and V = n−1S2 to compute Z for data with skewness γ, then
a(x) = γ(2x2 + 1)/6 and (next slide) a′(x) = −γ(x2 − 1)/6.

! The corresponding expansion for Z∗ is

PĜ(Z
∗ ≤ z) = Φ(z) + n−1/2â(z)φ(z) +Op(n

−1).

! Typically â(z) = a(z) +Op(n−1/2), so

PĜ(Z
∗ ≤ z)− PG(Z ≤ z) = Op(n

−1),

so the order of error is n−1.
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Why Studentize? II

! Without Studentization, Z = n1/2(θ̂ − θ)
D−→ N(0, ν ′), and then

PG(Z ≤ z) = Φ
( z

ν ′1/2

)
+ n−1/2a′

( z

ν ′1/2

)
φ
( z

ν ′1/2

)
+O(n−1)

and
PĜ(Z

∗ ≤ z) = Φ
( z

ν̂ ′1/2

)
+ n−1/2â′

( z

ν̂ ′1/2

)
φ
( z

ν̂ ′1/2

)
+Op(n

−1).

! Typically ν̂ ′ = ν ′ +Op(n−1/2), giving

PĜ(Z
∗ ≤ z)− PG(Z ≤ z) = Op(n

−1/2),

and the difference in the leading terms means that the overall error is of order n−1/2.

! Thus Studentizing reduces error from Op(n−1/2) to Op(n−1): better than using large-sample
asymptotics, for which error is usually Op(n−1/2).
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Other confidence intervals

! Simpler approaches:

– Basic bootstrap interval: treat θ̂ − θ as pivot, get

θ̂ − (θ̂∗((R+1)(1−α)) − θ̂), θ̂ − (θ̂∗((R+1)α) − θ̂).

– Percentile interval: use empirical quantiles of θ̂∗1, . . . , θ̂
∗
R:

θ̂∗((R+1)α), θ̂∗((R+1)(1−α)) .

! The percentile interval is transformation-invariant, not the basic bootstrap interval.

! Bias-corrected and accelerated (BCa) intervals replace percentile interval with
(θ̂∗((R+1)α′), θ̂

∗
((R+1)(1−α′′)), where

α′ = Φ

{
w +

w + zα
1− a(w + zα)

}
, w = Φ−1

{
Ĝ∗(θ̂)

}
, a = 1

6

∑n
j=1 l

3
j

(∑n
j=1 l

2
j

)3/2 ,

with Ĝ∗ the EDF of the θ̂∗1, . . . , θ̂
∗
R, and l1, . . . , ln the empirical influence values (soon).

! If the bias w = 0, then Ĝ∗(θ̂) = 1
2 , so θ̂ is at the median of the EDF of θ̂∗

! If the acceleration a = 0, then the effect of the data y1, . . . , yn on θ̂ is symmetric.
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Comparisons

Table 2: Empirical error rates (%) for nonparametric bootstrap confidence limits in ratio estimation:
rates for sample sizes n1 = n2 = 10 are given above those for sample sizes n1 = n2 = 25. R = 999 for
all bootstrap methods. 10,000 data sets generated from Gamma distributions.

Method Nominal error rate
Lower limit Upper limit

1 2.5 5 10 10 5 2.5 1
Exact 1.0 2.8 5.5 10.5 9.8 4.8 2.6 1.0

1.0 2.3 4.8 9.9 10.2 4.9 2.5 1.1
Normal approximation 0.1 0.5 1.7 6.3 20.6 15.7 12.5 9.6

0.1 0.5 2.1 6.4 16.3 11.5 8.2 5.5
Basic bootstrap 0.0 0.0 0.2 1.8 24.4 21.0 18.6 16.4

0.0 0.1 0.4 3.0 19.2 15.0 12.5 10.3
Basic bootstrap, log scale 2.6 4.9 8.1 12.9 13.1 7.5 4.8 2.5

1.6 3.2 6.0 11.4 11.5 6.3 3.3 1.7
Studentized bootstrap 0.6 2.1 4.6 9.9 11.9 6.7 4.0 2.0

0.8 2.3 4.6 9.9 10.9 5.9 3.0 1.4
Studentized bootstrap, log scale 1.1 2.8 5.6 10.7 11.6 6.3 3.5 1.7

1.1 2.5 5.0 10.1 10.8 5.7 2.9 1.3
Bootstrap percentile 1.8 3.6 6.5 11.6 14.6 8.9 5.9 3.3

1.2 2.6 5.1 10.1 12.6 7.1 4.2 2.1
BCa 1.9 4.0 6.9 12.3 14.0 8.3 5.3 3.0

1.4 3.0 5.6 10.9 11.8 6.8 3.8 1.9
ABC 1.9 4.2 7.4 12.7 14.6 8.7 5.5 3.1

1.3 3.0 5.7 11.0 12.1 6.8 3.7 1.9
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Confidence interval lengths

Lengths of 95% confidence intervals for the first 1000 simulated samples in the numerical experiment
with Gamma data.
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Discussion

! Bootstrap confidence intervals usually under-cover (i.e., are too short).

! Normal, basic, and studentized intervals depend on scale.

! Percentile interval often too short but is transformation-invariant.

! Studentized intervals give best coverage overall, but

– they depend on scale, can be sensitive to V ;

– their lengths can be very variable;

– they are best when V is approximately constant.

! Improved percentile intervals have same asymptotic error as Studentized intervals, but often are
shorter, so give lower coverage probabilities.

! Caution: Edgeworth theory OK for smooth statistics, but beware rough statistics: must check
output.

! Typically need R > 1000 for reliable estimation of quantiles.
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5.3 Nonparametric Delta Method slide 202

Nonparametric delta method

! The delta method (Theorem 11) gives variance formulae for functions of averages.

! More generally we use the nonparametric delta method, which is based on the linear functional
expansion

t(F )
.
= t(G) +

∫
Lt(x;G) dF (x),

where Lt, the first derivative of t(·) at G, is defined by

Lt(y;G) = lim
ε→0

t{(1− ε)G+ εHy}− t(G)

ε
=
∂t {(1− ε)G+ εHy}

∂ε

∣∣∣∣
ε=0

,

with Hy(u) ≡ H(u− y) the Heaviside function jumping from 0 to 1 at u = y.

! The influence function value Lt(y;G) for the statistical functional t for an observation at y
when the background distribution is G, satisfies EG{Lt(Y ;G)} = 0.

! If Ĝ is based on a random sample y1, . . . , yn, then the jth empirical influence value is

lj = Lt(yj; Ĝ),

and EĜ{Lt(Y ; Ĝ)} = n−1∑
j lj = 0.

! The influence function also plays an important role in robust statistics.
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Nonparametric delta method II

! If we replace F by the EDF Ĝ for a random sample Y1, . . . , Yn, then

t(Ĝ)
.
= t(G) +

∫
Lt(x;G) dĜ(x) = t(G) +

1

n

n∑

j=1

Lt(Yj ;G),

has variance

var{t(Ĝ)} .
=

1

n2

n∑

j=1

L2
t (Yj ;G) = VL,

say, which we estimate based on a sample y1, . . . , yn by vL = n−2∑ l2j .

Example 71 Apply the nonparametric delta method to the average Y .

Example 72 Apply the nonparametric delta method to a statistic defined by an estimating equation,
and hence find the variance of the ratio V /U for data pairs Y = (U, V ).
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Note to Example 71

! The population mean and its empirical version are

θ = t(G) =

∫
x dG(x), θ̂ = t(Ĝ) =

∫
x dĜ(x) = n−1

n∑

j=1

Yj = Y .

! If Hy puts unit mass at y, its ‘density’ is a Dirac delta function δy(x), and

θ {(1− ε)G + εHy} =

∫
xd{(1− ε)G + εHy}(x)

= (1− ε)

∫
xdG(x) + ε

∫
xdHy(x) = (1− ε)θ(G) + εy

and therefore

L(y;G) = lim
ε→0

θ {(1− ε)G + εHy}− θ(G)

ε
= lim

ε→0

(1− ε)θ(G) + εy − θ(G)

ε
= y − θ(G),

! Hence the empirical influence values and variance estimate are

lj = L(yj; Ĝ) = yj − y, vL =
1

n2

∑
(yj − y)2 =

n− 1

n
n−1s2.
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Note to Example 72

! The scalar parameter θ = t(G) is determined implicitly through the estimating equation

∫
a(x; θ) dG(x) =

∫
a{x; t(G)}dG(x) = 0.

We replace G by Gε = (1− ε)G + εHy and see that

0 =

∫
a {x; t(Gε)} dGε(x)

= (1− ε)

∫
a {x; t(Gε)} dG(x) + ε

∫
a {x; t(Gε)} dHy(x)

= (1− ε)

∫
a {x; t(Gε)} dG(x) + εa {y; t(Gε)} ,

and differentiation using the chain rule gives

0 = a {y; t(Gε)}−
∫

a {x; t(Gε)} dG(x)+εaθ {y; t(Gε)}
∂t(Gε)

∂ε
+(1−ε)

∫
aθ {x; t(Gε)}

∂t(Gε)

∂ε
dG(x),

which reduces to

0 = a {y; t(G)}+
∫

aθ {x; t(G)} dG(x)
∂t(G)

∂ε

∣∣∣∣
ε=0

on setting ε = 0. Hence

Lt(y;G) =
∂t(Gε)

∂ε

∣∣∣∣
ε=0

=
a(y; θ)

−
∫
aθ(x; θ) dG(x)

, where aθ(x; θ) =
∂a(x; θ)

∂θ
.

! In the case of the ratio and with y = (u, v), we take a(y; θ) = v − θu, so

θ = θ(G) =

∫
v dG(u, v)/

∫
udG(u, v), θ̂ = v/u,

and aθ = −u, so lj = (xj − θ̂uj)/u, giving

vL =
1

n2

∑
(
xj − θ̂uj

u

)2

.
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Comments

! For statistics involving only averages (ratio, correlation coefficient, . . . ), the nonparametric delta
method retrieves the delta method.

! For example, the correlation coefficient may be written as a function of xu = n−1∑xjuj, etc.:

θ̂ =
xu− x u

{
(x2 − x2)(u2 − u2)

}1/2
,

from which empirical influence values lj can be derived, giving vL = 0.029 for the handedness
data, to be compared with v = 0.043 obtained by bootstrapping.

! vL typically underestimates var(θ̂)!

! The lj can also be obtained by numerical differentiation if t(Ĝ) is coded appropriately, or
approximated using a jackknife method.

stat.epfl.ch Autumn 2024 – slide 205

130


